Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Part Segmentation using Compositional Model combining Shape and Appearance (1412.6124v1)

Published 18 Dec 2014 in cs.CV

Abstract: In this paper, we study the problem of semantic part segmentation for animals. This is more challenging than standard object detection, object segmentation and pose estimation tasks because semantic parts of animals often have similar appearance and highly varying shapes. To tackle these challenges, we build a mixture of compositional models to represent the object boundary and the boundaries of semantic parts. And we incorporate edge, appearance, and semantic part cues into the compositional model. Given part-level segmentation annotation, we develop a novel algorithm to learn a mixture of compositional models under various poses and viewpoints for certain animal classes. Furthermore, a linear complexity algorithm is offered for efficient inference of the compositional model using dynamic programming. We evaluate our method for horse and cow using a newly annotated dataset on Pascal VOC 2010 which has pixelwise part labels. Experimental results demonstrate the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jianyu Wang (84 papers)
  2. Alan Yuille (294 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.