Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transport map accelerated Markov chain Monte Carlo (1412.5492v4)

Published 17 Dec 2014 in stat.CO

Abstract: We introduce a new framework for efficient sampling from complex probability distributions, using a combination of optimal transport maps and the Metropolis-Hastings rule. The core idea is to use continuous transportation to transform typical Metropolis proposal mechanisms (e.g., random walks, Langevin methods) into non-Gaussian proposal distributions that can more effectively explore the target density. Our approach adaptively constructs a lower triangular transport map-an approximation of the Knothe-Rosenblatt rearrangement-using information from previous MCMC states, via the solution of an optimization problem. This optimization problem is convex regardless of the form of the target distribution. It is solved efficiently using a Newton method that requires no gradient information from the target probability distribution; the target distribution is instead represented via samples. Sequential updates enable efficient and parallelizable adaptation of the map even for large numbers of samples. We show that this approach uses inexact or truncated maps to produce an adaptive MCMC algorithm that is ergodic for the exact target distribution. Numerical demonstrations on a range of parameter inference problems show order-of-magnitude speedups over standard MCMC techniques, measured by the number of effectively independent samples produced per target density evaluation and per unit of wallclock time.

Summary

We haven't generated a summary for this paper yet.