Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Scale-Invariant Convolutional Neural Networks (1412.5104v1)

Published 16 Dec 2014 in cs.CV, cs.LG, and cs.NE

Abstract: Convolutional Neural Networks (ConvNets) have shown excellent results on many visual classification tasks. With the exception of ImageNet, these datasets are carefully crafted such that objects are well-aligned at similar scales. Naturally, the feature learning problem gets more challenging as the amount of variation in the data increases, as the models have to learn to be invariant to certain changes in appearance. Recent results on the ImageNet dataset show that given enough data, ConvNets can learn such invariances producing very discriminative features [1]. But could we do more: use less parameters, less data, learn more discriminative features, if certain invariances were built into the learning process? In this paper we present a simple model that allows ConvNets to learn features in a locally scale-invariant manner without increasing the number of model parameters. We show on a modified MNIST dataset that when faced with scale variation, building in scale-invariance allows ConvNets to learn more discriminative features with reduced chances of over-fitting.

Citations (132)

Summary

We haven't generated a summary for this paper yet.