Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equations over free inverse monoids with idempotent variables (1412.4737v2)

Published 11 Dec 2014 in cs.LO

Abstract: We introduce the notion of idempotent variables for studying equations in inverse monoids. It is proved that it is decidable in singly exponential time (DEXPTIME) whether a system of equations in idempotent variables over a free inverse monoid has a solution. The result is proved by a direct reduction to solve language equations with one-sided concatenation and a known complexity result by Baader and Narendran: Unification of concept terms in description logics, 2001. We also show that the problem becomes DEXPTIME hard , as soon as the quotient group of the free inverse monoid has rank at least two. Decidability for systems of typed equations over a free inverse monoid with one irreducible variable and at least one unbalanced equation is proved with the same complexity for the upper bound. Our results improve known complexity bounds by Deis, Meakin, and Senizergues: Equations in free inverse monoids, 2007. Our results also apply to larger families of equations where no decidability has been previously known.

Citations (3)

Summary

We haven't generated a summary for this paper yet.