Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding a sparse vector in a subspace: Linear sparsity using alternating directions (1412.4659v3)

Published 15 Dec 2014 in cs.IT, cs.CV, cs.LG, math.IT, math.OC, and stat.ML

Abstract: Is it possible to find the sparsest vector (direction) in a generic subspace $\mathcal{S} \subseteq \mathbb{R}p$ with $\mathrm{dim}(\mathcal{S})= n < p$? This problem can be considered a homogeneous variant of the sparse recovery problem, and finds connections to sparse dictionary learning, sparse PCA, and many other problems in signal processing and machine learning. In this paper, we focus on a planted sparse model for the subspace: the target sparse vector is embedded in an otherwise random subspace. Simple convex heuristics for this planted recovery problem provably break down when the fraction of nonzero entries in the target sparse vector substantially exceeds $O(1/\sqrt{n})$. In contrast, we exhibit a relatively simple nonconvex approach based on alternating directions, which provably succeeds even when the fraction of nonzero entries is $\Omega(1)$. To the best of our knowledge, this is the first practical algorithm to achieve linear scaling under the planted sparse model. Empirically, our proposed algorithm also succeeds in more challenging data models, e.g., sparse dictionary learning.

Citations (110)

Summary

We haven't generated a summary for this paper yet.