Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

G(l,k,d)-modules via groupoids (1412.4494v2)

Published 15 Dec 2014 in math.RT, math.CO, and math.GR

Abstract: In this note we describe a seemingly new approach to the complex representation theory of the wreath product $G\wr S_d$ where $G$ is a finite abelian group. The approach is motivated by an appropriate version of Schur-Weyl duality. We construct a combinatorially defined groupoid in which all endomorphism algebras are direct products of symmetric groups and prove that the groupoid algebra is isomorphic to the group algebra of $G\wr S_d$. This directly implies a classification of simple modules. As an application, we get a Gelfand model for $G\wr S_d$ from the classical involutive Gelfand model for the symmetric group. We describe the Schur-Weyl duality which motivates our approach and relate it to various Schur-Weyl dualities in the literature. Finally, we discuss an extension of these methods to all complex reflection groups of type $G(\ell,k,d)$.

Summary

We haven't generated a summary for this paper yet.