Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Anomaly Detection in Very Large Graphs: Models, Noise, and Computational Complexity (1412.4411v1)

Published 14 Dec 2014 in cs.SI and physics.soc-ph

Abstract: Anomaly detection in massive networks has numerous theoretical and computational challenges, especially as the behavior to be detected becomes small in comparison to the larger network. This presentation focuses on recent results in three key technical areas, specifically geared toward spectral methods for detection. We first discuss recent models for network behavior, and how their structure can be exploited for efficient computation of the principal eigenspace of the graph. In addition to the stochasticity of background activity, a graph of interest may be observed through a noisy or imperfect mechanism, which may hinder the detection process. A few simple noise models are discussed, and we demonstrate the ability to fuse multiple corrupted observations and recover detection performance. Finally, we discuss the challenges in scaling the spectral algorithms to large-scale high-performance computing systems, and present preliminary recommendations to achieve good performance with current parallel eigensolvers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.