Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sigma-model limit of Yang-Mills instantons in higher dimensions (1412.4258v3)

Published 13 Dec 2014 in hep-th, math-ph, math.DG, and math.MP

Abstract: We consider the Hermitian Yang-Mills (instanton) equations for connections on vector bundles over a 2n-dimensional K\"ahler manifold X which is a product Y x Z of p- and q-dimensional Riemannian manifold Y and Z with p+q=2n. We show that in the adiabatic limit, when the metric in the Z direction is scaled down, the gauge instanton equations on Y x Z become sigma-model instanton equations for maps from Y to the moduli space M (target space) of gauge instantons on Z if q>= 4. For q<4 we get maps from Y to the moduli space M of flat connections on Z. Thus, the Yang-Mills instantons on Y x Z converge to sigma-model instantons on Y while Z shrinks to a point. Put differently, for small volume of Z, sigma-model instantons on Y with target space M approximate Yang-Mills instantons on Y x Z.

Summary

We haven't generated a summary for this paper yet.