Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edwards-Wilkinson fluctuations in the Howitt-Warren flows (1412.3911v2)

Published 12 Dec 2014 in math.PR

Abstract: We study current fluctuations in a one-dimensional interacting particle system known as the dual smoothing process that is dual to random motions in a Howitt-Warren flow. The Howitt-Warren flow can be regarded as the transition kernels of a random motion in a continuous space-time random environment. It turns out that the current fluctuations of the dual smoothing process fall in the Edwards-Wilkinson universality class, where the fluctuations occur on the scale $t{1/4}$ and the limit is a universal Gaussian process. Along the way, we prove a quenched invariance principle for a random motion in the Howitt-Warren flow. Meanwhile, the centered quenched mean process of the random motion also converges on the scale $t{1/4}$, where the limit is another universal Gaussian process.

Summary

We haven't generated a summary for this paper yet.