Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Notes on quantum weighted projective spaces and multidimensional teardrops (1412.3586v2)

Published 11 Dec 2014 in math.QA

Abstract: It is shown that the coordinate algebra of the quantum $2n+1$-dimensional lens space $\mathcal{O}(L{2n+1}q(\prod{i=0}n m_i; m_0,\ldots, m_n))$ is a principal $\mathbb{Z}$-comodule algebra or the coordinate algebra of a circle principal bundle over the weighted quantum projective space $\mathbb{WP}n_q(m_0,\ldots, m_n)$. Furthermore, the weighted $U(1)$-action or the $\mathbb{CZ}$-coaction on the quantum odd dimensional sphere algebra $\mathcal{O}(S{2n+1}_q)$ that defines $\mathbb{WP}n_q(1,m_1,\ldots, m_n)$ is free or principal. Analogous results are proven for quantum real weighted projective spaces $\mathbb{RP}{2n}_q(m_0,\ldots, m_n)$. The $K$-groups of $\mathbb{WP}n_q(1,\ldots, 1, m)$ and $\mathbb{RP}{2n}_q(1,\ldots, 1,m)$ and the $K_1$-group of $L{2n+1}_q(N; m_0,\ldots, m_n)$ are computed

Summary

We haven't generated a summary for this paper yet.