Notes on quantum weighted projective spaces and multidimensional teardrops (1412.3586v2)
Abstract: It is shown that the coordinate algebra of the quantum $2n+1$-dimensional lens space $\mathcal{O}(L{2n+1}q(\prod{i=0}n m_i; m_0,\ldots, m_n))$ is a principal $\mathbb{Z}$-comodule algebra or the coordinate algebra of a circle principal bundle over the weighted quantum projective space $\mathbb{WP}n_q(m_0,\ldots, m_n)$. Furthermore, the weighted $U(1)$-action or the $\mathbb{CZ}$-coaction on the quantum odd dimensional sphere algebra $\mathcal{O}(S{2n+1}_q)$ that defines $\mathbb{WP}n_q(1,m_1,\ldots, m_n)$ is free or principal. Analogous results are proven for quantum real weighted projective spaces $\mathbb{RP}{2n}_q(m_0,\ldots, m_n)$. The $K$-groups of $\mathbb{WP}n_q(1,\ldots, 1, m)$ and $\mathbb{RP}{2n}_q(1,\ldots, 1,m)$ and the $K_1$-group of $L{2n+1}_q(N; m_0,\ldots, m_n)$ are computed