Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On martingale tail sums for the path length in random trees (1412.3508v3)

Published 11 Dec 2014 in math.PR and cs.DS

Abstract: For a martingale $(X_n)$ converging almost surely to a random variable $X$, the sequence $(X_n - X)$ is called martingale tail sum. Recently, Neininger [Random Structures Algorithms, 46 (2015), 346-361] proved a central limit theorem for the martingale tail sum of R{\'e}gnier's martingale for the path length in random binary search trees. Gr{\"u}bel and Kabluchko [to appear in Annals of Applied Probability, (2016), arXiv 1410.0469] gave an alternative proof also conjecturing a corresponding law of the iterated logarithm. We prove the central limit theorem with convergence of higher moments and the law of the iterated logarithm for a family of trees containing binary search trees, recursive trees and plane-oriented recursive trees.

Citations (11)

Summary

We haven't generated a summary for this paper yet.