Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution of Linear Statistics of Singular Values of the Product of Random Matrices (1412.3314v2)

Published 10 Dec 2014 in math.PR

Abstract: In this paper we consider the product of two independent random matrices $\mathbb X{(1)}$ and $\mathbb X{(2)}$. Assume that $X_{jk}{(q)}, 1 \le j,k \le n, q = 1, 2,$ are i.i.d. random variables with $\mathbb E X_{jk}{(q)} = 0, \mathbb E (X_{jk}{(q)})2 = 1$. Denote by $s_1, ..., s_n$ the singular values of $\mathbb W: = \frac{1}{n} \mathbb X{(1)} \mathbb X{(2)}$. We prove the central limit theorem for linear statistics of the squared singular values $s_12,..., s_n2$ showing that the limiting variance depends on $\kappa_4: = \mathbb E (X_{11}{1})4 - 3$.

Summary

We haven't generated a summary for this paper yet.