Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Covers Using Prefix Tables (1412.3016v2)

Published 9 Dec 2014 in cs.DS

Abstract: An \emph{indeterminate string} $x = x[1..n]$ on an alphabet $\Sigma$ is a sequence of nonempty subsets of $\Sigma$; $x$ is said to be \emph{regular} if every subset is of size one. A proper substring $u$ of regular $x$ is said to be a \emph{cover} of $x$ iff for every $i \in 1..n$, an occurrence of $u$ in $x$ includes $x[i]$. The \emph{cover array} $\gamma = \gamma[1..n]$ of $x$ is an integer array such that $\gamma[i]$ is the longest cover of $x[1..i]$. Fifteen years ago a complex, though nevertheless linear-time, algorithm was proposed to compute the cover array of regular $x$ based on prior computation of the border array of $x$. In this paper we first describe a linear-time algorithm to compute the cover array of regular string $x$ based on the prefix table of $x$. We then extend this result to indeterminate strings.

Citations (10)

Summary

We haven't generated a summary for this paper yet.