Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Approach for Reducing Outliers of Non Local Means Image Denoising Filter (1412.2444v2)

Published 8 Dec 2014 in cs.CV

Abstract: We propose an adaptive approach for non local means (NLM) image filtering termed as non local adaptive clipped means (NLACM), which reduces the effect of outliers and improves the denoising quality as compared to traditional NLM. Common method to neglect outliers from a data population is computation of mean in a range defined by mean and standard deviation. In NLACM we perform the median within the defined range based on statistical estimation of the neighbourhood region of a pixel to be denoised. As parameters of the range are independent of any additional input and is based on local intensity values, hence the approach is adaptive. Experimental results for NLACM show better estimation of true intensity from noisy neighbourhood observation as compared to NLM at high noise levels. We have verified the technique for speckle noise reduction and we have tested it on ultrasound (US) image of lumbar spine. These ultrasound images act as guidance for injection therapy for treatment of lumbar radiculopathy. We believe that the proposed approach for image denoising is first of its kind and its efficiency can be well justified as it shows better performance in image restoration.

Summary

We haven't generated a summary for this paper yet.