Papers
Topics
Authors
Recent
Search
2000 character limit reached

An iterative step-function estimator for graphons

Published 5 Dec 2014 in math.ST, stat.CO, stat.ML, and stat.TH | (1412.2129v2)

Abstract: Exchangeable graphs arise via a sampling procedure from measurable functions known as graphons. A natural estimation problem is how well we can recover a graphon given a single graph sampled from it. One general framework for estimating a graphon uses step-functions obtained by partitioning the nodes of the graph according to some clustering algorithm. We propose an iterative step-function estimator (ISFE) that, given an initial partition, iteratively clusters nodes based on their edge densities with respect to the previous iteration's partition. We analyze ISFE and demonstrate its performance in comparison with other graphon estimation techniques.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.