Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On purity and applications to coderived and singularity categories (1412.1615v1)

Published 4 Dec 2014 in math.CT, math.AG, math.RA, and math.RT

Abstract: Given a locally coherent Grothendieck category G, we prove that the homotopy category of complexes of injective objects (also known as the coderived category of G) is compactly generated triangulated. Moreover, the full subcategory of compact objects is none other than Db(fp G). If G admits a generating set of finitely presentable objects of finite projective dimension, then also the derived category of G is compactly generated and Krause's recollement exists. Our main tools are (a) model theoretic techniques and (b) a systematic study of the pure derived category of an additive finitely accessible category.

Citations (62)

Summary

We haven't generated a summary for this paper yet.