Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A classification of Nichols algebras of semi-simple Yetter-Drinfeld modules over non-abelian groups (1412.0857v2)

Published 2 Dec 2014 in math.QA, math.GR, and math.RA

Abstract: Over fields of arbitrary characteristic we classify all braid-indecomposable tuples of at least two absolutely simple Yetter-Drinfeld modules over non-abelian groups such that the group is generated by the support of the tuple and the Nichols algebra of the tuple is finite-dimensional. Such tuples are classified in terms of analogs of Dynkin diagrams which encode much information about the Yetter-Drinfeld modules. We also compute the dimensions of these finite-dimensional Nichols algebras. Our proof uses the Weyl groupoid of a tuple of simple Yetter-Drinfeld modules.

Summary

We haven't generated a summary for this paper yet.