Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian nonparametric mean residual life regression (1412.0367v4)

Published 1 Dec 2014 in stat.AP and stat.ME

Abstract: The mean residual life function is a key functional for a survival distribution. It has a practically useful interpretation as the expected remaining lifetime given survival up to a particular time point, and it also characterizes the survival distribution. However, it has received limited attention in terms of inference methods under a probabilistic modeling framework. We seek to provide general inference methodology for mean residual life regression. We employ Dirichlet process mixture modeling for the joint stochastic mechanism of the covariates and the survival response. This density regression approach implies a flexible model structure for the mean residual life of the conditional response distribution, allowing general shapes for mean residual life as a function of covariates given a specific time point, as well as a function of time given particular values of the covariates. We further extend the mixture model to incorporate dependence across experimental groups. This extension is built from a dependent Dirichlet process prior for the group-specific mixing distributions, with common atoms and weights that vary across groups through latent bivariate Beta distributed random variables. We discuss properties of the regression models, and develop methods for posterior inference. The different components of the methodology are illustrated with simulated data examples, and the model is also applied to a data set comprising right censored survival times.

Summary

We haven't generated a summary for this paper yet.