Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale Population and Mobility Estimation with Geo-tagged Tweets (1412.0327v1)

Published 1 Dec 2014 in cs.SI, cs.CY, and physics.soc-ph

Abstract: Recent outbreaks of Ebola and Dengue viruses have again elevated the significance of the capability to quickly predict disease spread in an emergent situation. However, existing approaches usually rely heavily on the time-consuming census processes, or the privacy-sensitive call logs, leading to their unresponsive nature when facing the abruptly changing dynamics in the event of an outbreak. In this paper we study the feasibility of using large-scale Twitter data as a proxy of human mobility to model and predict disease spread. We report that for Australia, Twitter users' distribution correlates well the census-based population distribution, and that the Twitter users' travel patterns appear to loosely follow the gravity law at multiple scales of geographic distances, i.e. national level, state level and metropolitan level. The radiation model is also evaluated on this dataset though it has shown inferior fitness as a result of Australia's sparse population and large landmass. The outcomes of the study form the cornerstones for future work towards a model-based, responsive prediction method from Twitter data for disease spread.

Citations (29)

Summary

We haven't generated a summary for this paper yet.