Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Amortized Analysis on Asynchronous Gradient Descent (1412.0159v1)

Published 29 Nov 2014 in math.OC and cs.GT

Abstract: Gradient descent is an important class of iterative algorithms for minimizing convex functions. Classically, gradient descent has been a sequential and synchronous process. Distributed and asynchronous variants of gradient descent have been studied since the 1980s, and they have been experiencing a resurgence due to demand from large-scale machine learning problems running on multi-core processors. We provide a version of asynchronous gradient descent (AGD) in which communication between cores is minimal and for which there is little synchronization overhead. We also propose a new timing model for its analysis. With this model, we give the first amortized analysis of AGD on convex functions. The amortization allows for bad updates (updates that increase the value of the convex function); in contrast, most prior work makes the strong assumption that every update must be significantly improving. Typically, the step sizes used in AGD are smaller than those used in its synchronous counterpart. We provide a method to determine the step sizes in AGD based on the Hessian entries for the convex function. In certain circumstances, the resulting step sizes are a constant fraction of those used in the corresponding synchronous algorithm, enabling the overall performance of AGD to improve linearly with the number of cores. We give two applications of our amortized analysis.

Citations (12)

Summary

We haven't generated a summary for this paper yet.