Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability Theory without Bayes' Rule (1411.7920v2)

Published 28 Nov 2014 in math.PR, cs.AI, math.ST, and stat.TH

Abstract: Within the Kolmogorov theory of probability, Bayes' rule allows one to perform statistical inference by relating conditional probabilities to unconditional probabilities. As we show here, however, there is a continuous set of alternative inference rules that yield the same results, and that may have computational or practical advantages for certain problems. We formulate generalized axioms for probability theory, according to which the reverse conditional probability distribution P(B|A) is not specified by the forward conditional probability distribution P(A|B) and the marginals P(A) and P(B). Thus, in order to perform statistical inference, one must specify an additional "inference axiom," which relates P(B|A) to P(A|B), P(A), and P(B). We show that when Bayes' rule is chosen as the inference axiom, the axioms are equivalent to the classical Kolmogorov axioms. We then derive consistency conditions on the inference axiom, and thereby characterize the set of all possible rules for inference. The set of "first-order" inference axioms, defined as the set of axioms in which P(B|A) depends on the first power of P(A|B), is found to be a 1-simplex, with Bayes' rule at one of the extreme points. The other extreme point, the "inversion rule," is studied in depth.

Summary

We haven't generated a summary for this paper yet.