Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derandomizing Isolation Lemma for $K_{3,3}$-free and $K_5$-free Bipartite Graphs (1411.7614v1)

Published 27 Nov 2014 in cs.CC and cs.DS

Abstract: The perfect matching problem has a randomized NC algorithm, using the celebrated Isolation Lemma of Mulmuley, Vazirani and Vazirani. The Isolation Lemma states that giving a random weight assignment to the edges of a graph, ensures that it has a unique minimum weight perfect matching, with a good probability. We derandomize this lemma for $K_{3,3}$-free and $K_5$-free bipartite graphs, i.e. we give a deterministic log-space construction of such a weight assignment for these graphs. Such a construction was known previously for planar bipartite graphs. Our result implies that the perfect matching problem for $K_{3,3}$-free and $K_5$-free bipartite graphs is in SPL. It also gives an alternate proof for an already known result -- reachability for $K_{3,3}$-free and $K_5$-free graphs is in UL.

Citations (11)

Summary

We haven't generated a summary for this paper yet.