Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SACRM: Social Aware Crowdsourcing with Reputation Management in Mobile Sensing (1411.7416v1)

Published 26 Nov 2014 in cs.NI

Abstract: Mobile sensing has become a promising paradigm for mobile users to obtain information by task crowdsourcing. However, due to the social preferences of mobile users, the quality of sensing reports may be impacted by the underlying social attributes and selfishness of individuals. Therefore, it is crucial to consider the social impacts and trustworthiness of mobile users when selecting task participants in mobile sensing. In this paper, we propose a Social Aware Crowdsourcing with Reputation Management (SACRM) scheme to select the well-suited participants and allocate the task rewards in mobile sensing. Specifically, we consider the social attributes, task delay and reputation in crowdsourcing and propose a participant selection scheme to choose the well-suited participants for the sensing task under a fixed task budget. A report assessment and rewarding scheme is also introduced to measure the quality of the sensing reports and allocate the task rewards based the assessed report quality. In addition, we develop a reputation management scheme to evaluate the trustworthiness and cost performance ratio of mobile users for participant selection. Theoretical analysis and extensive simulations demonstrate that SACRM can efficiently improve the crowdsourcing utility and effectively stimulate the participants to improve the quality of their sensing reports.

Citations (89)

Summary

We haven't generated a summary for this paper yet.