Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note relating ridge regression and OLS p-values to preconditioned sparse penalized regression (1411.7405v2)

Published 26 Nov 2014 in stat.ML and stat.ME

Abstract: When the design matrix has orthonormal columns, "soft thresholding" the ordinary least squares (OLS) solution produces the Lasso solution [Tibshirani, 1996]. If one uses the Puffer preconditioned Lasso [Jia and Rohe, 2012], then this result generalizes from orthonormal designs to full rank designs (Theorem 1). Theorem 2 refines the Puffer preconditioner to make the Lasso select the same model as removing the elements of the OLS solution with the largest p-values. Using a generalized Puffer preconditioner, Theorem 3 relates ridge regression to the preconditioned Lasso; this result is for the high dimensional setting, p > n. Where the standard Lasso is akin to forward selection [Efron et al., 2004], Theorems 1, 2, and 3 suggest that the preconditioned Lasso is more akin to backward elimination. These results hold for sparse penalties beyond l1; for a broad class of sparse and non-convex techniques (e.g. SCAD and MC+), the results hold for all local minima.

Citations (6)

Summary

We haven't generated a summary for this paper yet.