Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outerplanar and planar oriented cliques (1411.7192v1)

Published 26 Nov 2014 in math.CO and cs.DM

Abstract: The clique number of an undirected graph $G$ is the maximum order of a complete subgraph of $G$ and is a well-known lower bound for the chromatic number of $G$. Every proper $k$-coloring of $G$ may be viewed as a homomorphism (an edge-preserving vertex mapping) of $G$ to the complete graph of order $k$. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natural notion of (oriented) colorings and oriented chromatic number of oriented graphs. An oriented clique is then an oriented graph whose number of vertices and oriented chromatic number coincide. However, the structure of oriented cliques is much less understood than in the undirected case. In this paper, we study the structure of outerplanar and planar oriented cliques. We first provide a list of 11 graphs and prove that an outerplanar graph can be oriented as an oriented clique if and only if it contains one of these graphs as a spanning subgraph. Klostermeyer and MacGillivray conjectured that the order of a planar oriented clique is at most 15, which was later proved by Sen [S. Sen. Maximum Order of a Planar Oclique Is 15. Proc. IWOCA'2012. {\em Lecture Notes Comput. Sci.} 7643:130--142]. We show that any planar oriented clique on 15 vertices must contain a particular oriented graph as a spanning subgraph, thus reproving the above conjecture. We also provide tight upper bounds for the order of planar oriented cliques of girth $k$ for all $k \ge 4$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ayan Nandy (1 paper)
  2. Sagnik Sen (35 papers)
  3. Eric Sopena (36 papers)
Citations (25)

Summary

We haven't generated a summary for this paper yet.