Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Schwinger--Dyson Equation in the Borel Plane: singularities of the solution (1411.7190v2)

Published 26 Nov 2014 in math-ph, hep-ph, hep-th, and math.MP

Abstract: We map the Schwinger--Dyson equation and the renormalization group equation for the massless Wess--Zumino model in the Borel plane, where the product of functions get mapped to a convolution product. The two-point function can be expressed as a superposition of general powers of the external momentum. The singularities of the anomalous dimension are shown to lie on the real line in the Borel plane and to be linked to the singularities of the Mellin transform of the one-loop graph. This new approach allows us to enlarge the reach of previous studies on the expansions around those singularities. The asymptotic behavior at infinity of the Borel transform of the solution is beyond the reach of analytical methods and we do a preliminary numerical study, aiming to show that it should remain bounded.

Summary

We haven't generated a summary for this paper yet.