Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximately counting locally-optimal structures (1411.6829v3)

Published 25 Nov 2014 in cs.CC

Abstract: A locally-optimal structure is a combinatorial structure such as a maximal independent set that cannot be improved by certain (greedy) local moves, even though it may not be globally optimal. It is trivial to construct an independent set in a graph. It is easy to (greedily) construct a maximal independent set. However, it is NP-hard to construct a globally-optimal (maximum) independent set. In general, constructing a locally-optimal structure is somewhat more difficult than constructing an arbitrary structure, and constructing a globally-optimal structure is more difficult than constructing a locally-optimal structure. The same situation arises with listing. The differences between the problems become obscured when we move from listing to counting because nearly everything is #P-complete. However, we highlight an interesting phenomenon that arises in approximate counting, where the situation is apparently reversed. Specifically, we show that counting maximal independent sets is complete for #P with respect to approximation-preserving reductions, whereas counting all independent sets, or counting maximum independent sets is complete for an apparently smaller class, $\mathrm{#RH}\Pi_1$ which has a prominent role in the complexity of approximate counting. Motivated by the difficulty of approximately counting maximal independent sets in bipartite graphs, we also study the problem of approximately counting other locally-optimal structures that arise in algorithmic applications, particularly problems involving minimal separators and minimal edge separators. Minimal separators have applications via fixed-parameter-tractable algorithms for constructing triangulations and phylogenetic trees. Although exact (exponential-time) algorithms exist for listing these structures, we show that the counting problems are #P-complete with respect to both exact and approximation-preserving reductions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.