Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the exact decay rate of all solutions to some second order evolution equations with dissipation (1411.6761v1)

Published 25 Nov 2014 in math.AP

Abstract: We consider an abstract second order evolution equation with damping. The "elastic" term is represented by a self-adjoint nonnegative operator A with discrete spectrum, and the nonlinear term has order greater than one at the origin. We investigate the asymptotic behavior of solutions. We prove the coexistence of slow solutions and fast solutions. Slow solutions live close to the kernel of A, and decay as negative powers of t as solutions of the first order equation obtained by neglecting the operator A and the second order time-derivatives in the original equation. Fast solutions live close to the range of A and decay exponentially as solutions of the linear homogeneous equation obtained by neglecting the nonlinear terms in the original equation. The abstract results apply to semilinear dissipative hyperbolic equations.

Summary

We haven't generated a summary for this paper yet.