Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-dimensional local Hamiltonian problem with area laws is QMA-complete (1411.6614v3)

Published 24 Nov 2014 in cond-mat.str-el, cs.CC, and quant-ph

Abstract: We show that the two-dimensional (2D) local Hamiltonian problem with the constraint that the ground state obeys area laws is QMA-complete. We also prove similar results in 2D translation-invariant systems and for the 3D Heisenberg and Hubbard models with local magnetic fields. Consequently, unless MA = QMA, not all ground states of 2D local Hamiltonians with area laws have efficient classical representations that support efficient computation of local expectation values. In the future, even if area laws are proved for ground states of 2D gapped systems, the computational complexity of these systems remains unclear.

Citations (7)

Summary

We haven't generated a summary for this paper yet.