Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-time Asymptotics of the Filtering Distribution for Partially Observed Chaotic Dynamical Systems (1411.6510v1)

Published 24 Nov 2014 in math.DS

Abstract: The filtering distribution is a time-evolving probability distribution on the state of a dynamical system, given noisy observations. We study the large-time asymptotics of this probability distribution for discrete-time, randomly initialized signals that evolve according to a deterministic map $\Psi$. The observations are assumed to comprise a low-dimensional projection of the signal, given by an operator $P$, subject to additive noise. We address the question of whether these observations contain sufficient information to accurately reconstruct the signal. In a general framework, we establish conditions on $\Psi$ and $P$ under which the filtering distributions concentrate around the signal in the small-noise, long-time asymptotic regime. Linear systems, the Lorenz '63 and '96 models, and the Navier Stokes equation on a two-dimensional torus are within the scope of the theory. Our main findings come as a by-product of computable bounds, of independent interest, for suboptimal filters based on new variants of the 3DVAR filtering algorithm.

Summary

We haven't generated a summary for this paper yet.