Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Edge Connectivity in Near-Linear Time (1411.5123v5)

Published 19 Nov 2014 in cs.DS and cs.DM

Abstract: We present a deterministic near-linear time algorithm that computes the edge-connectivity and finds a minimum cut for a simple undirected unweighted graph G with n vertices and m edges. This is the first o(mn) time deterministic algorithm for the problem. In near-linear time we can also construct the classic cactus representation of all minimum cuts. The previous fastest deterministic algorithm by Gabow from STOC'91 took ~O(m+k2 n), where k is the edge connectivity, but k could be Omega(n). At STOC'96 Karger presented a randomized near linear time Monte Carlo algorithm for the minimum cut problem. As he points out, there is no better way of certifying the minimality of the returned cut than to use Gabow's slower deterministic algorithm and compare sizes. Our main technical contribution is a near-linear time algorithm that contract vertex sets of a simple input graph G with minimum degree d, producing a multigraph with ~O(m/d) edges which preserves all minimum cuts of G with at least 2 vertices on each side. In our deterministic near-linear time algorithm, we will decompose the problem via low-conductance cuts found using PageRank a la Brin and Page (1998), as analyzed by Andersson, Chung, and Lang at FOCS'06. Normally such algorithms for low-conductance cuts are randomized Monte Carlo algorithms, because they rely on guessing a good start vertex. However, in our case, we have so much structure that no guessing is needed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ken-ichi Kawarabayashi (73 papers)
  2. Mikkel Thorup (70 papers)
Citations (64)

Summary

We haven't generated a summary for this paper yet.