Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Number field lattices achieve Gaussian and Rayleigh channel capacity within a constant gap (1411.4591v2)

Published 17 Nov 2014 in cs.IT, math.IT, and math.NT

Abstract: This paper proves that a family of number field lattice codes simultaneously achieves a constant gap to capacity in Rayleigh fast fading and Gaussian channels. The key property in the proof is the existence of infinite towers of Hilbert class fields with bounded root discriminant. The gap to capacity of the proposed families is determined by the root discriminant. The comparison between the Gaussian and fading case reveals that in Rayleigh fading channels the normalized minimum product distance plays an analogous role to the Hermite invariant in Gaussian channels.

Citations (11)

Summary

We haven't generated a summary for this paper yet.