Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic HYPE: Flow-based modelling of stochastic hybrid systems (1411.4433v1)

Published 17 Nov 2014 in cs.SY, cs.LO, and cs.PF

Abstract: Stochastic HYPE is a novel process algebra that models stochastic, instantaneous and continuous behaviour. It develops the flow-based approach of the hybrid process algebra HYPE by replacing non-urgent events with events with exponentially-distributed durations and also introduces random resets. The random resets allow for general stochasticity, and in particular allow for the use of event durations drawn from distributions other than the exponential distribution. To account for stochasticity, the semantics of stochastic HYPE target piecewise deterministic Markov processes (PDMPs), via intermediate transition-driven stochastic hybrid automata (TDSHA) in contrast to the hybrid automata used as semantic target for HYPE. Stochastic HYPE models have a specific structure where the controller of a system is separate from the continuous aspect of this system providing separation of concerns and supporting reasoning. A novel equivalence is defined which captures when two models have the same stochastic behaviour (as in stochastic bisimulation), instantaneous behaviour (as in classical bisimulation) and continuous behaviour. These techniques are illustrated via an assembly line example.

Citations (4)

Summary

We haven't generated a summary for this paper yet.