Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LAMP: A Locally Adapting Matching Pursuit Framework for Group Sparse Signatures in Ultra-Wide Band Radar Imaging (1411.4020v1)

Published 14 Nov 2014 in cs.IT and math.IT

Abstract: It has been found that radar returns of extended targets are not only sparse but also exhibit a tendency to cluster into randomly located, variable sized groups. However, the standard techniques of Compressive Sensing as applied in radar imaging hardly considers the clustering tendency into account while reconstructing the image from the compressed measurements. If the group sparsity is taken into account, it is intuitive that one might obtain better results both in terms of accuracy and time complexity as compared to the conventional recovery techniques like Orthogonal Matching Pursuit (OMP). In order to remedy this, techniques like Block OMP have been used in the existing literature. An alternate approach is via reconstructing the signal by transforming into the Hough Transform Domain where they become point-wise sparse. However, these techniques essentially assume specific size and structure of the groups and are not always effective if the exact characteristics of the groups are not known, prior to reconstruction. In this manuscript, a novel framework that we call locally adapting matching pursuit (LAMP) have been proposed for efficient reconstruction of group sparse signals from compressed measurements without assuming any specific size, location, or structure of the groups. The recovery guarantee of the LAMP and its superiority compared to the existing algorithms has been established with respect to accuracy, time complexity and flexibility in group size. LAMP has been successfully used on a real-world, experimental data set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.