2000 character limit reached
Amalgam Anosov representations (1411.2288v4)
Published 9 Nov 2014 in math.GT, math.DS, and math.GR
Abstract: Let $\Gamma$ be a one-ended, torsion-free hyperbolic group and let $G$ be a semisimple Lie group with finite center. Using the canonical JSJ splitting due to Sela, we define amalgam Anosov representations of $\Gamma$ into $G$ and prove that they form a domain of discontinuity for the action of $\mathrm{Out}(\Gamma)$. In the appendix, we prove, using projective Anosov Schottky groups, that if the restriction of the representation to every Fuchsian or rigid vertex group of the JSJ splitting of $\Gamma$ is Anosov, with respect to a fixed pair of opposite parabolic subgroups, then $\rho$ is amalgam Anosov.