Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Congruences for Taylor expansions of quantum modular forms (1411.1047v3)

Published 4 Nov 2014 in math.NT and math.QA

Abstract: Recently, a beautiful paper of Andrews and Sellers has established linear congruences for the Fishburn numbers modulo an infinite set of primes. Since then, a number of authors have proven refined results, for example, extending all of these congruences to arbitrary powers of the primes involved. Here, we take a different perspective and explain the general theory of such congruences in the context of an important class of quantum modular forms. As one example, we obtain an infinite series of combinatorial sequences connected to the "half-derivatives" of the Andrews-Gordon functions and with Kashaev's invariant on $(2m+1,2)$ torus knots, and we prove conditions under which the sequences satisfy linear congruences modulo at least $50\%$ of primes of primes.

Summary

We haven't generated a summary for this paper yet.