Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tied Probabilistic Linear Discriminant Analysis for Speech Recognition (1411.0895v1)

Published 4 Nov 2014 in cs.CL and cs.AI

Abstract: Acoustic models using probabilistic linear discriminant analysis (PLDA) capture the correlations within feature vectors using subspaces which do not vastly expand the model. This allows high dimensional and correlated feature spaces to be used, without requiring the estimation of multiple high dimension covariance matrices. In this letter we extend the recently presented PLDA mixture model for speech recognition through a tied PLDA approach, which is better able to control the model size to avoid overfitting. We carried out experiments using the Switchboard corpus, with both mel frequency cepstral coefficient features and bottleneck feature derived from a deep neural network. Reductions in word error rate were obtained by using tied PLDA, compared with the PLDA mixture model, subspace Gaussian mixture models, and deep neural networks.

Citations (19)

Summary

We haven't generated a summary for this paper yet.