Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Community Detection with the WCC Metric (1411.0557v1)

Published 3 Nov 2014 in cs.SI and physics.soc-ph

Abstract: Community detection has become an extremely active area of research in recent years, with researchers proposing various new metrics and algorithms to address the problem. Recently, the Weighted Community Clustering (WCC) metric was proposed as a novel way to judge the quality of a community partitioning based on the distribution of triangles in the graph, and was demonstrated to yield superior results over other commonly used metrics like modularity. The same authors later presented a parallel algorithm for optimizing WCC on large graphs. In this paper, we propose a new distributed, vertex-centric algorithm for community detection using the WCC metric. Results are presented that demonstrate the algorithm's performance and scalability on up to 32 worker machines and real graphs of up to 1.8 billion vertices. The algorithm scales best with the largest graphs, and to our knowledge, it is the first distributed algorithm for optimizing the WCC metric.

Citations (16)

Summary

We haven't generated a summary for this paper yet.