Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong approximation of Black--Scholes theory based on simple random walks (1411.0501v1)

Published 3 Nov 2014 in math.PR

Abstract: A basic model in financial mathematics was introduced by Black, Scholes and Merton in 1973 (BSM model). A classical discrete approximation in distribution is the binomial model given by Cox, Ross and Rubinstein in 1979 (CRR model). The BSM and the CRR models have been used for example to price European call and put options. Our aim in this work is to give a strong (almost sure, pathwise) discrete approximation of the BSM model using a suitable nested sequence of simple, symmetric random walks. The approximation extends to the stock price process, the value process, the replicating portfolio, and the greeks. An important tool in the approximation is a discrete version of the Feynman--Kac formula as well. It is hoped that such a discrete pathwise approximation can be useful for example when teaching students whose mathematical background is limited, e.g. does not contain measure theory or stochastic analysis.

Summary

We haven't generated a summary for this paper yet.