Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Matrix Completion under Sparse Factor Models (1411.0282v1)

Published 2 Nov 2014 in stat.ML, cs.IT, math.IT, and stat.AP

Abstract: This paper examines a general class of noisy matrix completion tasks where the goal is to estimate a matrix from observations obtained at a subset of its entries, each of which is subject to random noise or corruption. Our specific focus is on settings where the matrix to be estimated is well-approximated by a product of two (a priori unknown) matrices, one of which is sparse. Such structural models - referred to here as "sparse factor models" - have been widely used, for example, in subspace clustering applications, as well as in contemporary sparse modeling and dictionary learning tasks. Our main theoretical contributions are estimation error bounds for sparsity-regularized maximum likelihood estimators for problems of this form, which are applicable to a number of different observation noise or corruption models. Several specific implications are examined, including scenarios where observations are corrupted by additive Gaussian noise or additive heavier-tailed (Laplace) noise, Poisson-distributed observations, and highly-quantized (e.g., one-bit) observations. We also propose a simple algorithmic approach based on the alternating direction method of multipliers for these tasks, and provide experimental evidence to support our error analyses.

Citations (34)

Summary

We haven't generated a summary for this paper yet.