Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic Orbits of Oval Billiards on Surfaces of Constant Curvature (1411.0236v3)

Published 2 Nov 2014 in math.DS

Abstract: In this paper we define and study the billiard problem on bounded regions on surfaces of constant curvature. We show that this problem defines a 2-dimensional conservative and reversible dynamical system, defined by a Twist diffeomorphism, if the boundary of the region is an oval. Using these properties and defining good perturbations for billiards, we show, in this new version, that having only a finite number of nondegenerate periodic orbits for each fixed period is an open property for billiards on surfaces of constant curvature and a dense one on the Euclidean and the hyperbolic planes. For the proof of the density, the techniques we use for the Euclidean and hyperbolic cases, do not work for the spherical case, due to a constraint (the perimeter of the polygonal trajectory being a multiple of {\pi}). We finish this paper studying the stability of these nondegenerate orbits.

Summary

We haven't generated a summary for this paper yet.