Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Submodular Minimization using Wolfe's Algorithm (1411.0095v1)

Published 1 Nov 2014 in cs.DS and math.OC

Abstract: Owing to several applications in large scale learning and vision problems, fast submodular function minimization (SFM) has become a critical problem. Theoretically, unconstrained SFM can be performed in polynomial time [IFF 2001, IO 2009]. However, these algorithms are typically not practical. In 1976, Wolfe proposed an algorithm to find the minimum Euclidean norm point in a polytope, and in 1980, Fujishige showed how Wolfe's algorithm can be used for SFM. For general submodular functions, this Fujishige-Wolfe minimum norm algorithm seems to have the best empirical performance. Despite its good practical performance, very little is known about Wolfe's minimum norm algorithm theoretically. To our knowledge, the only result is an exponential time analysis due to Wolfe himself. In this paper we give a maiden convergence analysis of Wolfe's algorithm. We prove that in $t$ iterations, Wolfe's algorithm returns an $O(1/t)$-approximate solution to the min-norm point on {\em any} polytope. We also prove a robust version of Fujishige's theorem which shows that an $O(1/n2)$-approximate solution to the min-norm point on the base polytope implies {\em exact} submodular minimization. As a corollary, we get the first pseudo-polynomial time guarantee for the Fujishige-Wolfe minimum norm algorithm for unconstrained submodular function minimization.

Citations (62)

Summary

We haven't generated a summary for this paper yet.