Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-space quadrature: a convenient, efficient representation for multipole expansions (1411.0011v1)

Published 31 Oct 2014 in math-ph and math.MP

Abstract: Multipolar expansions are a foundational tool for describing basis functions in quantum mechanics, many-body polarization, and other distributions on the unit sphere. Progress on these topics is often held back by complicated and competing formulas for calculating and using spherical harmonics. We present a complete representation for supersymmetric 3D tensors that replaces spherical harmonic basis functions by a dramatically simpler set of weights associated to discrete points in 3D space. This representation is shown to be space optimal. It reduces tensor contraction and the spherical harmonic decomposition of Poisson's operator to pairwise summations over the point set. Moreover, multiplication of spherical harmonic basis functions translates to a direct product in this representation.

Summary

We haven't generated a summary for this paper yet.