Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra (1410.8686v1)

Published 31 Oct 2014 in math.QA

Abstract: Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $H_H\mathcal{YD}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $\mathrm{BM}(k, H,R)$ in [18]. To this aim, we have to develop the braided bi-Galois theory initiated by Schauenburg in [14,15], which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category.

Summary

We haven't generated a summary for this paper yet.