Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk in a large claims insurance market with bipartite graph structure (1410.8671v3)

Published 31 Oct 2014 in q-fin.RM

Abstract: We model the influence of sharing large exogeneous losses to the reinsurance market by a bipartite graph. Using Pareto-tailed claims and multivariate regular variation we obtain asymptotic results for the Value-at-Risk and the Conditional Tail Expectation. We show that the dependence on the network structure plays a fundamental role in their asymptotic behaviour. As is well-known in a non-network setting, if the Pareto exponent is larger than 1, then for the individual agent (reinsurance company) diversification is beneficial, whereas when it is less than 1, concentration on a few objects is the better strategy. An additional aspect of this paper is the amount of uninsured losses which have to be convered by society. In the situation of networks of agents, in our setting diversification is never detrimental concerning the amount of uninsured losses. If the Pareto-tailed claims have finite mean, diversification turns out to be never detrimental, both for society and for individual agents. In contrast, if the Pareto-tailed claims have infinite mean, a conflicting situation may arise between the incentives of individual agents and the interest of some regulator to keep risk for society small. We explain the influence of the network structure on diversification effects in different network scenarios.

Summary

We haven't generated a summary for this paper yet.