Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dyadic torsion of 2-dimensional hyperelliptic Jacobians (1410.8110v1)

Published 29 Oct 2014 in math.NT

Abstract: Let $k$ be a field of characteristic $0$, and let $\alpha_{1}$, $\alpha_{2}$, ..., $\alpha_{5}$ be algebraically independent and transcendental over $k$. Let $K$ be the transcendental extension of $k$ obtained by adjoining the elementary symmetric functions of the $\alpha_{i}$'s. Let $J$ be the Jacobian of the hyperelliptic curve defined over $K$ which is given by the equation $y{2} = \prod_{i = 1}{5} (x - \alpha_{i})$. We define a tower of field extensions $K = K_{0}' \subset K_{1}' \subset K_{2}' \subset ...$ by giving recursive formulas for the generators of each $K_{n}'$ over $K_{n - 1}'$, and let $K_{\infty}' = \bigcup_{n = 0}{\infty} K_{n}'$. We show that $K_{\infty}'(\mu_{2})$ is the subextension of the field $K(J[2{\infty}]) := \bigcup_{n = 0}{\infty} K(E[2{n}])$ corresponding to a central order-$2$ Galois subgroup of $\mathrm{Gal}(K(J[2{\infty}]) / K(\mu_{2}))$, and a generator of $K(J[2{\infty}])$ over $K_{\infty}'(\mu_{2})$ is given.

Summary

We haven't generated a summary for this paper yet.