Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant four-variable automorphic kernel functions (1410.7458v2)

Published 27 Oct 2014 in math.NT

Abstract: Let $F$ be a number field, let $\mathbb{A}F$ be its ring of adeles, and let $g_1,g_2,h_1,h_2 \in \mathrm{GL}_2(\mathbb{A}_F)$. Previously the author provided an absolutely convergent geometric expression for the four variable kernel function $$ \sum{\pi} K_{\pi}(g_1,g_2)K_{\pi{\vee}}(h_1,h_2)L(s,(\pi \times \pi{\vee})S), $$ where the sum is over isomorphism classes of cuspidal automorphic representations $\pi$ of $\mathrm{GL}2(\mathbb{A}_F)$. Here $K{\pi}$ is the typical kernel function representing the action of a test function on the space of the cuspidal automorphic representation $\pi$. In this paper we show how to use ideas from the circle method to provide an alternate expansion for the four variable kernel function that is visibly invariant under the natural action of $\mathrm{GL}_2(F) \times \mathrm{GL}_2(F)$.

Summary

We haven't generated a summary for this paper yet.