Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohomology classes of interval positroid varieties and a conjecture of Liu (1410.7419v3)

Published 8 Oct 2014 in math.CO and math.AG

Abstract: To each finite subset of $\mathbb{Z}2$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture. However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we exhibit the appropriate diagram variety as a component in a degeneration of one of Knutson's interval positroid varieties (up to Grassmann duality). A priori, the cohomology classes of these interval positroid varieties are represented by affine Stanley symmetric functions. We give a different formula for these classes as ordinary Stanley symmetric functions, one with the advantage of being Schur-positive and compatible with inclusions between Grassmannians.

Summary

We haven't generated a summary for this paper yet.