Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of the Multigrid-Convergence Rate on Semi-structured Meshes by Local Fourier Analysis (1410.7254v1)

Published 27 Oct 2014 in cs.NA and math.NA

Abstract: In this paper a local Fourier analysis for multigrid methods on tetrahedral grids is presented. Different smoothers for the discretization of the Laplace operator by linear finite elements on such grids are analyzed. A four-color smoother is presented as an efficient choice for regular tetrahedral grids, whereas line and plane relaxations are needed for poorly shaped tetrahedra. A novel partitioning of the Fourier space is proposed to analyze the four-color smoother. Numerical test calculations validate the theoretical predictions. A multigrid method is constructed in a block-wise form, by using different smoothers and different numbers of pre- and post-smoothing steps in each tetrahedron of the coarsest grid of the domain. Some numerical experiments are presented to illustrate the efficiency of this multigrid algorithm.

Citations (22)

Summary

We haven't generated a summary for this paper yet.