Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized weights: an anticode approach (1410.7207v2)

Published 27 Oct 2014 in cs.IT and math.IT

Abstract: In this paper we study generalized weights as an algebraic invariant of a code. We first describe anticodes in the Hamming and in the rank metric, proving in particular that optimal anticodes in the rank metric coincide with Frobenius-closed spaces. Then we characterize both generalized Hamming and rank weights of a code in terms of the intersection of the code with optimal anticodes in the respective metrics. Inspired by this description, we propose a new algebraic invariant, which we call "Delsarte generalized weights", for Delsarte rank-metric codes based on optimal anticodes of matrices. We show that our invariant refines the generalized rank weights for Gabidulin codes proposed by Kurihara, Matsumoto and Uyematsu, and establish a series of properties of Delsarte generalized weights. In particular, we characterize Delsarte optimal codes and anticodes in terms of their generalized weights. We also present a duality theory for the new algebraic invariant, proving that the Delsarte generalized weights of a code completely determine the Delsarte generalized weights of the dual code. Our results extend the theory of generalized rank weights for Gabidulin codes. Finally, we prove the analogue for Gabidulin codes of a theorem of Wei, proving that their generalized rank weights characterize the worst-case security drops of a Gabidulin rank-metric code.

Citations (42)

Summary

We haven't generated a summary for this paper yet.